Hochschild Cohomology via Incidence Algebras

نویسنده

  • MARÍA JULIA REDONDO
چکیده

Given an algebra A we associate an incidence algebra A(Σ) and compare their Hochschild cohomology groups.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Hochschild Cohomology of Tame Hecke Algebras

In this paper we are interested in Hochschild cohomology of finite-dimensional algebras; the main motivation is to generalize group cohomology to larger classes of algebras. If suitable finite generation holds, one can define support varieties of modules as introduced by [SS]. Furthermore, when the algebra is self-injective, many of the properties of group representations generalize to this set...

متن کامل

Hochschild Cohomology and Support Varieties for Tame Hecke Algebras

We give a basis for the Hochschild cohomology ring of tame Hecke algebras. We then show that the Hochschild cohomology ring modulo nilpotence is a finitely generated algebra of Krull dimension 2, and describe the support varieties of modules for these algebras.

متن کامل

Hochschild Homology and Split Pairs

We study the Hochschild homology of algebras related via split pairs, and apply this to fibre products, trivial extensions, monomial algebras, graded-commutative algebras and quantum complete intersections. In particular, we compute lower bounds for the dimensions of both the Hochschild homology and cohomology groups of quantum complete intersections.

متن کامل

Hochschild Cohomology of Smash Products and Rank One Hopf Algebras

We give some general results on the ring structure of Hochschild cohomology of smash products of algebras with Hopf algebras. We compute this ring structure explicitly for a large class of finite dimensional Hopf algebras of rank one.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006